VASANTH NAGAR, BENGALURU-560052

**Education wing** 

# $10^{\rm th}$ STANDARD MID TERM EXAM KEY ANSWERS 2024-25

Prepared by: SHIVAPPA.T, MMDRS HARAPANAHALLI TOWN, Vijayanagara dist, Mob.9916142961

| MARKS:             | 30         DATE: 27/09/2024         DURATION: 3 hr                     | 15min |
|--------------------|------------------------------------------------------------------------|-------|
| Question<br>number | Value points                                                           | Marks |
| 1                  | A) 1                                                                   | 1     |
| 2                  | C) P(x)=x                                                              | 1     |
| 3                  | $B)\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$                               | 1     |
| 4                  | D) $2x^2-3x+5=0$                                                       | 1     |
| 5                  | B)-2                                                                   | 1     |
| 6                  | C)3cm                                                                  | 1     |
| 7                  | D) (3, 0)                                                              | 1     |
| 8                  | A) $\sqrt{x^2 + y^2}$                                                  | 1     |
| 9                  | Every cubic polynomial has <b>degree 3</b>                             | 1     |
| 10                 | Number of zeroes in this graph is <b>3</b>                             | 1     |
| 11                 | Infinitely many solutions                                              | 1     |
| 12                 | $Sn = \frac{n}{2}(2a + (n-1)d)$                                        | 1     |
| 13                 | One angle equal, two sides are in proportion. SAS similarity criteria. | 1     |
| 14                 | x=0 or x=6                                                             | 1     |
| 15                 | 3 75                                                                   | 1     |
|                    | $5 \left  \frac{25}{5} \right $                                        |       |
|                    | $\therefore 75 = 3x5x5 \text{ or } 3x5^2$                              |       |
| 16                 | $x-5=11-x = 2x=1/6$ $\therefore x=8$                                   | 1     |

| 17         | Let $5 + \sqrt{2} = \frac{p}{q}$ be a rational number, where p and q are co-prime and $q \neq 0$ . |   |
|------------|----------------------------------------------------------------------------------------------------|---|
|            | Then, $\sqrt{2} = \frac{p}{-5} = \frac{p-5q}{-5}$                                                  |   |
|            | $\rightarrow \sqrt{2} - \frac{p-5q}{p-5q}$                                                         |   |
|            | $\rightarrow \sqrt{2} - \frac{q}{q}$                                                               |   |
|            | since $\frac{p}{q}$ is a rational number,                                                          | 2 |
|            | therefore, $\sqrt{2}$ is a rational number. But, it is a contradiction.                            |   |
|            | Hence, 5 + $\sqrt{2}$ is irrational. Hence, proved.                                                |   |
| 18         | Finding the HCF:                                                                                   |   |
|            | - From the prime factorizations:                                                                   |   |
|            | - Prime factors of 438: 2, 3, 73<br>Drime factors of 606: 2, 3, 101                                | 2 |
|            | - The common prime factors are 2 and 3.                                                            |   |
|            | - Multiply the common prime factors: 2X3=6                                                         |   |
|            | Therefore, the largest number that divides both 438 and 606 without leaving a                      |   |
|            | remainder 18 6.                                                                                    |   |
| 19         | Let the zeroes be $\alpha$ and $\beta$ which is equal to 5 and 3 respectively.                     |   |
|            | sum of zeroes, $\alpha + \beta = 5+3 = 8$                                                          |   |
|            | product of zeroes, $\alpha\beta = 5x^3 = 15$<br>$x^2 = (sum of zeroes)x + (product of zeroes) = 0$ | 2 |
|            | $x^{2} - (\alpha + \beta)x + \alpha\beta$                                                          |   |
|            | x <sup>2</sup> -8x+15                                                                              |   |
| 20         | Two equations are                                                                                  |   |
|            | 1  wo equations are<br>2x+y=10(1) multiply by 1                                                    |   |
|            | x-y=2(2) multiply by 2                                                                             |   |
|            | We get $2x+y=10$                                                                                   |   |
|            | 2x-2y=4                                                                                            |   |
|            | After subtraction $y=2$ 1 mark                                                                     | 2 |
|            | Put y value in any one equation we get x<br>Equation one becomes $2x + y = 10$                     |   |
|            | Equation one becomes $2x+y=10$<br>2x+2=10                                                          |   |
|            | 2x=10-2                                                                                            |   |
|            | 2x=8 x=4                                                                                           |   |
| 21         | 1 mark                                                                                             |   |
| <b>—</b> ± | Given equation is $x^2+7x+10=0$ , by factorisation method<br>$x^2+5x+10=0$                         |   |
|            | $x^{-+3x+2x+10=0}$<br>x(x+5)+2(x+5) = 0 x+5=0 or x+2=0                                             | 2 |
|            | x=-5  and  x=-2                                                                                    | 2 |
|            |                                                                                                    |   |





| 26 | Given polynomial is $p(x)=x^2-5x+6$ by factorisation method                |      |
|----|----------------------------------------------------------------------------|------|
|    | Zeroes of polynomial is $x^2-5x+6$                                         |      |
|    | x <sup>2</sup> -2x-3x+6                                                    |      |
|    | x(x-2) - 3(x-2)                                                            |      |
|    | (x-2)(x-3)                                                                 |      |
|    |                                                                            | ks   |
|    | Verification: we have two zeroes $\alpha = 2 & \beta = 3$                  | 3    |
|    | sum of zeroes, $\alpha + \beta = \frac{b}{a} = \frac{(-5)}{1} = 5$ (2+3=5) |      |
|    | product of zeroes, $\alpha\beta = \frac{c}{a} = \frac{6}{1} = 6$ (2x3=6)   |      |
|    | hence verified 1.5 mark                                                    | 3.8  |
| 27 | given quadratic equation is $3x(3x-2)=-1$                                  |      |
|    | $9x^2-6x+1=0$                                                              |      |
|    | a=9, b=-6  and  c=1 1 ma                                                   | rk   |
|    | nature of the roots, $\Delta = b^2 - 4ac$                                  | 3    |
|    | $= (-6)^2 - 4x9x1$                                                         |      |
|    | = 36-36                                                                    |      |
|    | = 0 1 mar                                                                  | k    |
|    | If $\Delta=0$ , then roots are real and equal. 1 mark                      | x    |
|    | OR                                                                         |      |
|    | given quadratic equation is $kx(x-2)+6=0$ has real and equal roots         |      |
|    | kx <sup>2</sup> -2kx+6=0                                                   | 1    |
|    | a=k, b=-2k and c=6 1 mar                                                   | ·k 3 |
|    | nature of the roots of real and equal, $b^2-4ac = 0$                       |      |
|    | $(-2k)^2 - 4xkx6 = 0$                                                      |      |
|    | $4K^2 - 24K = 0$                                                           |      |
| 20 | K=0 2 mark                                                                 | KS . |
| 28 | Given: $a_3=4$ and $a_9=-8$                                                |      |
|    | $a_{\pm}2u_{\pm}4$ and $a_{\pm}0u_{\pm}-0$                                 | 7    |
|    | subtract above two equations we get $u=2$ and $u=0$                        | X    |
|    | a+(n-1)d=0                                                                 | 3    |
|    | 8+(n-1)-2=0                                                                | 5    |
|    | 8+2-2n=0                                                                   |      |
|    | 2n=10                                                                      |      |
|    | n=5 2 mark                                                                 | KS   |
|    | Thus 5 <sup>th</sup> term of this A.P is zero.                             |      |
|    | OR                                                                         |      |
|    | Given: a3=16, and a7=a5+12                                                 |      |
|    | a+2d=16 (1) and $a+6d=a+4d+12 == - 2d=12 d=6$                              |      |
|    | a+2x6=16                                                                   |      |
|    | a=16-12=4                                                                  |      |



In the figure,  $CD^2 = CP^2 - DP^2$  $= (CA + AP)^{2} - (DB + BP)^{2}$ = CA<sup>2</sup> + AP<sup>2</sup> + 2 CA AP - DB<sup>2</sup> - BP<sup>2</sup> - 2 DB BP => CD<sup>2</sup> + DB<sup>2</sup> = CA<sup>2</sup> - (BP<sup>2</sup> - AP<sup>2</sup>) + 2 CA \* AP - 2 DB BP  $=> CB^2 = CA^2 - AB^2 + 2 CA AP - 2 DB BP$ => 2 AB<sup>2</sup> = 2 CA \* AP - 2 DB \* BP as  $CB^2 = CA^2 + AB^2$ => AB<sup>2</sup> = (PC - AP) AP - (DP - BP) BP = AP\* PC - AP<sup>2</sup> - DP \* BP + BP<sup>2</sup> = AP PC - DP \* BP + AB<sup>2</sup> => AP \* PC = DP \* BP 32 Here, m1 = 2, m2 = 3,  $x_1 = -1$ ,  $y_1 = 7$ ,  $x_2 = 4$  and  $y_2 = -3$ W.K.T,  $(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$  $= \left(\frac{2(4) + 3(-1)}{2 + 3}, \frac{2(-3) + 3(7)}{2 + 3}\right)$  $= \left(\frac{8 - 3}{5}, \frac{-6 + 21}{5}\right)$ 1 mark =(1, 3)2 marks OR The distance between any two points can be measured using the distance formula which is given by  $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$ Let point P (x, y) be equidistant from points A (3, 6) and B (-3, 4). Since they are equidistant, PA = PBHence by applying the distance formula for PA = PB, we get  $\sqrt{(x-3)^2 + (y-6)^2} = \sqrt{(x-(-3))^2 + (y-4)^2}$  $\sqrt{(x-3)^2 + (y-6)^2} = \sqrt{(x+3)^2 + (y-4)^2}$ By squaring, we get  $PA^2 = PB^2$  $(x - 3)^{2} + (y - 6)^{2} = (x + 3)^{2} + (y - 4)^{2}$  $x^{2} + 9 - 6x + y^{2} + 36 - 12y = x^{2} + 9 + 6x + y^{2} + 16 - 8y$ 6x + 6x + 12y - 8y = 36 - 16 [On further simplifying] 12x + 4y = 203x + y = 53x + y - 5 = 0Thus, the relation between x and y is given by 3x + y - 5 = 033 In a parallelogram, the diagonals bisect each other. This means that the midpoint (M) of diagonal (AC) is also the midpoint of diagonal (BD). Let's denote the coordinates of points  $C(x_1, y_1)$  and  $D(x_2, y_2)$ . We know the coordinates of points A(-4, -2), B(1, -2), and (M), the midpoint of both diagonals. Then to find Coordinates of C, which is a line of AMC.

3

3

3



|    | 2b <sup>2</sup> +b-528=0                                                      |          |   |
|----|-------------------------------------------------------------------------------|----------|---|
|    | $2b^2+33b-32b-528=0$                                                          |          |   |
|    | b(2b+33)-16(2b+33)=0                                                          |          | 4 |
|    | (2b+33)(b-16)=0                                                               |          |   |
|    | 2b+33=0 or b-16=0                                                             | 2 marks  |   |
|    |                                                                               |          |   |
|    | b should not be zero                                                          |          |   |
|    | therefore                                                                     |          |   |
|    | b-16=0                                                                        |          |   |
|    | b=16                                                                          |          |   |
|    | breadth = 16m                                                                 |          |   |
|    | length =l= $2b+1=2x16+1=32+1=33m$                                             | 2 marks  |   |
|    | OR                                                                            |          |   |
|    | let the two consecutive number be x and x+1                                   |          |   |
|    | then according to question $x^2+(x+1)^2=365$                                  |          |   |
|    | $2x^2+2x-364=0$                                                               | 2 1      |   |
|    | $x^{2}+x-182=0$                                                               | 2 marks  |   |
|    | by factorisation method,                                                      |          | 4 |
|    | $x^{2}+14x-15x-182=0$                                                         |          | 4 |
|    | (x+14)(x-13)=0<br>That gives $x=12$ and $x=14$ . Avaiding as a pagetive value |          |   |
|    | That gives $x=15$ and $x=-14$ , Avoiding as a negative value.                 | 2 montro |   |
|    | One number is 15 and other one 14                                             | 2 marks  |   |
| 36 | Given: $S_{10}=185$ , and $a_{21}=15+a_{16}$                                  |          |   |
|    | $\frac{10}{2}(2a+9d) = 185$ $\frac{10}{2}(2a+9d) = 185$                       |          |   |
|    | Z $Z$ $Z$ $Z$ $Z$ $Z$ $Z$ $Z$ $Z$ $Z$                                         |          |   |
|    | 2a+9d=377(1) $20d-13d=13$                                                     |          |   |
|    | Ju = J                                                                        |          |   |
|    | Then equation (1) becomes $2_{2} \pm 9(3) - 37$                               |          |   |
|    | 2a+9(3)=37<br>2a+27=37                                                        |          |   |
|    | 2a+27-57<br>2a=10 $a=5$                                                       | 2 mark   |   |
|    | Now we have to find $S_{20}$ $S_n = \frac{n}{2}(2a+(n-1)d)$                   | 2 mark   | _ |
|    | $2^{20}(2, 5, (20, 1), 2)$                                                    | 1 1      | 4 |
|    | $S_{3_0} = \frac{2x_3 + (30 - 1)x_3}{2}$                                      | I mark   |   |
|    | = 15(10+29x3)                                                                 |          |   |
|    | = 15(10+87)                                                                   |          |   |
|    | = 15x97                                                                       |          |   |
|    | = 1445                                                                        | 1 mark   |   |
|    | ∴ The sum of 30 terms of this A.P is 1445                                     |          |   |
|    |                                                                               |          |   |
|    |                                                                               |          |   |
|    |                                                                               |          |   |

