Du	10 th Standard I ration : 3 hrs 15 mts	Aidterm Examination		: 2024-25 Maximum Marks : 80		
 1)	$H.C.F(a,b) \times L.C.M(a,b) = \dots$	L			1×8=8	
1)			$a \times b$	D) $a \div b$	1/0-0	
2)	Which of the following is a prin	,	u~D	\mathbf{D}) $\mathbf{u} \cdot \mathbf{v}$		
2)	A) 39 B) 61	C)	81	D) 93		
3)	The graph of $p(x)$ is given below. The number of zeroes of $p(x)$ is :					
		ľ				
	×	-	×			
	A) 3 B) 4	C)	6	D) 7		
4)	(5, 3) is a solution for this equa	tion				
	A) $x + y = 2$ B) $3x + y$	= 17 C)	<i>x</i> - <i>y</i> = 2	D) $x + 2y =$	10	
5)	The roots of the equation x					
	A) +1,-6 B) +3,-2		-3,-2	D) -1,+6		
6)	If $l^2 = r^2 + h^2$ then value of h					
	A) $\pm (l^2 - r^2)$ B) $\pm \sqrt{l^2 - r^2}$	r^2 C)	$\pm (r^2 - l^2)$	D) $\pm \sqrt{r^2 - l^2}$		
7)	The suitable formula to find the sum of first <i>n</i> terms of the A.P. $1+3+5+7+$ is :					
	A) $2n^2$ B) $n(n+1)$) C)	n^2	D) <i>n</i> (<i>n</i> -1)		
8)	Which of the following forms a		-			
	A) 12,8,13 B) 8,7,	12 C)	8,15,17	D) 5,4,9		
9)	Write the fundamental theorem of arithmetics. $1 \times 8 = 8$					
10)	Write degree of the polynomial : $5x^3 + 4x^2 + 7x$					
11)	'Length is 4 more than the breadth' Represent this in the form of an equation.					
12)	If $(2x-1)(x+3) = 0$ then what is the positive root of the equation ?					
13)	If in an A.P., $S_5 = 35$ and $S_4 = 22$ find the 5 th term.					
14)	A square is not similar to a rectangle. Why ? Write the formula to find the distance of a point (x, y) from the point of origin					
15) 16)	Write the formula to find the distance of a point (x, y) from the point of origin. Write an example of a polynomial whose graph is parallel to x-axis.					
	Find the smallest number which when divided by 6 and 8 gives a remainder 3 in each case.					
-)	OR					
17) 18) 19) 20) 21)	Solve : $3x + 2y = 11$ and $2x - 3y = 3$ If the n th term of an A.P. is $a_n = 3n-1$, find the A.P. Do the lines of equations $2x + y + 4 = 0$ and $x + 2y - 5 = 0$ intersect ? Justify. Find the quadratic polynomial whose zeroes are 5 and 3. Find the smallest number which when divided by 6 and 8 gives a remainder 3 in each case.					

Find the greatest number that divides 39 and 51 leaving 3 as the remainder in each case?

- 22) Find the coordinates of the mid-point of the line segment joining the points (2,1) and (4,7).
- 23) In \triangle ABC, D and E are points on the sides AB and AC respectively such that DE|| BC. If AB=15cm, AD=6cm, AC=20cm. Find the length of AE.
- 24) Find the HCF of 224 and 288. OR Find the L.C.M of 15, 30 and 45.
- 25) Prove that $\sqrt{3}$ is an irrational number.
- 26) Find the coordinates of the point dividing the line joining (-1,-3) and (4,7) in the ratio 2:3.

OR

Show that the points (1,-1), (5,2) and (9, 5) are collinear.

27) Solve the quadratic equation : $x^2 + x - 20 = 0$.

OR

Find the discriminant of the following equation: $4x^2 + 19x - 5 = 0$. Then state how many roots it has and whether they are real or imaginary.

- 28) Find the sum and product of the zeroes of the quadratic polynomial : $3x^2 + 10x 5$
- 29) Prove that A(3,1), B(0,-2), C(1,1), and D(4,4) are the vertices of a parallelogram ABCD.
- 30) In $\triangle ABC$, $\angle B = 90^{\circ}$. D is any point on AB and DE $\perp AC$.

If AC = 25cm, BC = 20cm and DE = 4cm, find AD.

OR

- 31) 5 pens and 1 book together cost Rs. 225. Cost of 10 pens is equal to the cost of 1 book. Find the total cost of 3 pens and 2 books.
- 32) State and prove Basic Proportionality (Thales) Theorem.
- 33) Find the sum of first 20 terms of the A.P: $2 + 5 + 8 + \dots$

OR

Find the 50^{th} term of the A.P: 0, 4, 8, 12.....

- 34) Solve graphically : x + y = 10 and x y = 4
- 35) Prove that "If two triangles are equiangular, then they are similar".
- 36) A shopkeeper buys some books for ₹80. If he had bought 4 more books for the same amount, each book would have cost ₹1 less. Find the number of books he bought.

OR

Sum of the areas of two squares is 400 cm^2 . If the difference of their perimeters is 16 cm, find the sides of the two squares.

- 37) The 4th and 7th term of an A.P. are 17 and 23 respectively. Find a_{15} .
- 38) A man starting from the point P walks 6 km towards North to reach the point Q. Then turns to East and walks 5 km to reach the point R. Again turns to North and walks 6 km to reach the point S.
 5×1=5
 - (i) Trace its map on a graph sheet.
 - (ii) Write the coordinates of the points P, Q, R and S.
 - (iii) Find how far is he from the starting point ?

3×6=18

4×4=16