

SUPER 40

10TH STANDARD MATHEMATICS(E,M)

LEARN 14 GET 40

MARCH 17, 2021
T.SHIVAKUMAR
MMDRS, HARAPANAHALLI

<u>Index</u>

Sl	Marks to	Name of the chapter/content	Page	Marks
No.	be		no.	to be
	expected			allotted
1	1 mark	Surface area and volumes- Learn All	2-3	1
		formulae		
2		Arithmetic progression – finding terms	4-5	2
3		Arithmetic progression –	6-7	2
		sum of nth terms		
4	2 marks	Coordinate geometry- Problems on	8-9	2
		distance formula		
5		Quadratic equations- solving quadratic	10-11	2
		equation by formula method		
6		Pair of linear equations in two	12-13	2
		variables- solve x & y		
7		Constructions – dividing the line	14-15	2
		segment		
8		Constructions – Tangent construction	16-17	3
9	3 marks	Statistics – Mean, Median & Mode	18-21	3
10		Statistics – Ogive graph	22-25	3
11		Circle- theorem	26	3
12		Pair of linear equations in two	27-30	4
	4 marks	variables- graphical solution(x & y)		
13		Constructions – construction of similar	31-33	4
		triangles		
14	4 or 5	Triangles – theorem	34-37	5
	marks			
		Total		38+2

**** practice all formulae from every chapter, you will get 2 more marks at least.

T.SHIVAKUMAR

MMDRS, HARAPANAHALLI

9916142961

PAGE 1

1. Surface area and volume: All Formulae

Cuboid:

Lateral surface area = LSA = 2h(l + b)

Total surface area = TSA = 2 (lb + bh+ lh)

Volume = lbh.

Area of four walls of a room = 2h(l + b)

Diagonals of cuboid = $\sqrt{l^2 + b^2 + h^2}$

Cube:

Lateral surface area = $LSA = 4a^2$

Total surface area = $TSA = 6a^2$

Volume = a^3 (a is edge of cube)

Diagonal of cube = $\sqrt{3}$ a.

Cylinder:

Right circular cylinder

LSA (or) CSA = $2\pi rh$

 $TSA = 2\pi rh + 2\pi r^2 (or)$

 $TSA = 2\pi r (r + h)$

Volume = $\pi r^2 h$.

Hollow cylinder.

Thickness of cylinder = R - r.

Area of cross section = π (R² -r²)

External CSA = $2\pi Rh$

Internal CSA = $2\pi rh$.

TSA = External CSA + Internal CSA +area of two ends.

 $= 2\pi Rh + 2\pi rh + 2\pi (R^2 - r^2)$

Volume = π (R² – r²) h.

Right circular cone:

CSA (or) $LSA = \pi rl$

 $TSA = \pi r (r + l)$

Volume = $\frac{1}{3}\pi$ r2 h

Slant height = $\sqrt{h^2 + r^2}$.

Frustum of a cone:

Slant height =
$$\sqrt{h^2 + (R - r)^2}$$
..
LSA = π (R + r) l.
TSA = π [R² + r² + (R + r) l]
Volume = $\frac{1}{3}\pi h$ [R² + r² + Rr].

Sphere:

$$CSA = 4\pi r^{2}$$

$$TSA = 4\pi r^{2}$$

$$Volume = \frac{4}{3}\pi r^{3}.$$

Hemisphere:

$$CSA = 2\pi r^2$$

$$TSA = 3\pi r^2$$

$$Volume = \frac{2}{3}\pi r^3.$$

2. Arithmetic Progression: nth terms of A.P

$$a_n = a + (n-1)d$$

1. Find the 20th term from the last term of the AP: 3, 8, 13, ..., 253.

Solution: We have, last term = 1 = 253

And, common difference $d = 2^{nd}$ term -1^{st} term = 8 - 3 = 5

Therefore, 20^{th} term from end = $1 - (20 - 1) \times d = 253 - 19 \times 5 = 253 - 95 = 158$.

2. Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5.

Solution:

Natural numbers between 101 and 999 divisible by both 2 and 5 are 110, 120, ... 990.

so,
$$a_1 = 110$$
, $d = 10$, $a_n = 990$

We know,
$$a_n = a_1 + (n - 1)d$$

$$990 = 110 + (n - 1)10$$

$$(n-1) = 990-11010$$

$$\Rightarrow$$
 n = 88 + 1 = 89.

3. Find how many integers between 200 and 500 are divisible by 8.

Solution:

AP formed is 208, 216, 224, ..., 496

Here,
$$a_n = 496$$
, $a = 208$, $d = 8$

$$a_n = a + (n - 1) d$$

$$\Rightarrow$$
 208 + (n - 1) x 8 = 496

$$\Rightarrow$$
 8 (n - 1) = 288

$$\Rightarrow$$
 n – 1 = 36

$$\Rightarrow$$
 n = 37.

4. How many terms of the AP 18, 16, 14, be taken so that their sum is zero? Solution:

Here,
$$a = 18$$
, $d = -2$, $s_n = 0$

Therefore,
$$n2[36 + (n-1)(-2)] = 0$$

$$\Rightarrow$$
 n(36 - 2n + 2) = 0

$$\Rightarrow n(38 - 2n) = 0$$

$$\Rightarrow$$
 n = 19.

5. Which term of the AP: 3, 8, 13, 18, ..., is 78?

Solution:

Let a_n be the required term and we have given AP

Here,
$$a = 3$$
, $d = 8 - 3 = 5$ and $a_n = 78$

Now,
$$a_n = a + (n - 1)d$$

 $\Rightarrow 78 = 3 + (n - 1) 5$
 $\Rightarrow 78 - 3 = (n - 1) \times 5$
 $\Rightarrow 75 = (n - 1) \times 5$
 $\Rightarrow 755 = n - 1$
 $\Rightarrow 15 = n - 1$
 $\Rightarrow n = 15 + 1 = 16$
Hence, 16^{th} term of given AP is 78.

Practice:

- 6. Find the 9th term from the end (towards the first term) of the A.P. 5, 9,13,185.(ans: 153).
- 7. How many two-digit numbers are divisible by 3?. (ans: 30)
- 8. Find the middle term of the A.P. 6,13,20,...,216. (Ans;111)
- 9. Find the 25th term of an arithmetic progression 2, 6, 10, 14, (ans: 98)
- 10. Find the 10th term of arithmetic progression 2, 7, 12 using the formula.(ans: 47).

3. Arithmetic Progression: Sum of nth terms.

$$S_n = \frac{n}{2} [2a + (n-1)d] \& S_n = \frac{n}{2} [a+1]$$

1. Find the sum of the A.P: 1, 3, 5, 199.

Solution: a=1, d=2 and last term l=199

$$a_n=a+(n-1)d$$

⇒199=1+(n-1)×2
⇒2n=200
 $n=100$
∴sum= $\frac{n}{2}$ [a+l]
 $=\frac{100}{2}$ [1+199]

=10000

2. Find the sum of the series 51+50+49+-----+21.

Solution: a=51, d=-1 and last term l=21

$$a_n=a+(n-1)d$$

⇒21=51+(n-1)×-1
21=51+1-n
⇒n=52-21
n=31
∴sum= $\frac{n}{2}$ [a+l]
 $=\frac{31}{2}$ [51+21] = $\frac{31}{2}$ [72]

3. How many terms of the AP 18, 16, 14, be taken so that their sum is zero?

Solution:

=1116

Here,
$$a = 18$$
, $d = -2$, $s_n = 0$
Therefore, $\frac{n}{2} [36 + (n - 1) (-2)] = 0$
 $\Rightarrow n(36 - 2n + 2) = 0$
 $\Rightarrow n(38 - 2n) = 0$
 $\Rightarrow n = 19$

4. Find the sum of first 22 terms of an AP in which d = 7 and 22^{nd} term is 149.

Solution: Given, Common difference, d = 7 22^{nd} term, $a_{22} = 149$ To find: Sum of first 22 term, S_{22} By the formula of nth term, we know; $a_n = a + (n - 1)d$ $a_{22} = a + (22 - 1)d$ $149 = a + 21 \times 7$ 149 = a + 147 a = 2 = First term Sum of nth term is given by the formula; $S_n = n/2 (a + a_n)$ = 22/2 (2 + 149) $= 11 \times 151$ = 1661

5. Find the sum of first 20 natural numbers which are divisible by 4.

Solution: The A.P which are divisible by 4 is 4, 8, 12,

Here we have to find a_n . a=4, d=4

$$a_{n}=a+(n-1d)$$

$$a_{20}=4+19x4$$

$$a_{20}=4+76$$

$$a_{20}=80.$$
∴sum= $\frac{n}{2}$ [a+l]
$$=\frac{20}{2}$$
 [4+80]
$$=10x84$$

$$=840.$$

Practice:

- 6. Find the sum of first 50 natural numbers which are divisible by 5.
- 7. Find the sum of: 1+5+9+---- up to 25 terms.
- 8. Find the sum of first 30 terms of the A,P 2, 6, 10,
- 9. How many terms of the A.P. 27,24,21,... should be taken so that their sum is zero?
- 10. Find the sum of 2+5+8+..... to 20 terms using the formula.

4. Coordinate geometry: Problems on distance formula.

Distance formula = $\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$.

1. Find the distance between the two points (2, 5) & (7, 6). Solution: here $x_1=2$, $x_2=7$, $y_1=5$ & $y_2=6$. Put all the values in the given formula.

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}.$$

$$= \sqrt{(7 - 2)^2 + (6 - 5)^2}.$$

$$= \sqrt{(5)^2 + (1)^2}.$$

$$= \sqrt{25 + 1}.$$

$$= \sqrt{26} \text{ sq.units}$$

2. Prove that the points (7, 10), (-2, 5) and (3, -4) are the vertices of an isosceles right triangle.

Solution:

Let A (7, 10), B(-2, 5), C(3, -4) be the vertices of a triangle.

AB =
$$\sqrt{(-2-7)^2 + (5-10)^2}$$

= $\sqrt{81+25} = \sqrt{106}$
BC = $\sqrt{(3+2)^2 + (-4-5)^2} = \sqrt{25+81} = \sqrt{106}$
AC = $\sqrt{(3-7)^2 + (-4-10)^2}$
= $\sqrt{16+196} = \sqrt{212}$
AB = BC = $\sqrt{106}$
 \therefore ABC is an isosceles Δ(i)
AB² + BC² = $(\sqrt{106})^2 + (\sqrt{106})^2$
= $106 + 106 = 212 = AC^2$

... [By converse of Pythagoras theorem

 Δ ABC is an isosceles right angled triangle. ...(ii) From (i) & (ii), Points A, B, C are the vertices of an isosceles right triangle.

3. Find that value(s) of x for which the distance between the points P(x, 4) and Q(9, 10) is 10 units. (2011D) Solution:

$$PQ^2 = 10^2 = 100 \dots$$
 [Squaring both sides

$$(9 - x)^2 + (10 - 4)^2 = 100$$
...(using distance formula

$$(9-x)^2 + 36 = 100$$

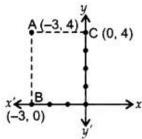
$$(9-x)^2 = 100 - 36 = 64$$

$$(9 - x) = \pm 8$$
 ...[Taking square-root on both sides

$$9 - x = 8 \text{ or } 9 - x = -8$$

 $9 - 8 = x \text{ or } 9 + 8 = x$
 $x = 1 \text{ or } x = 17$

4. Find the distance of the point (-3, 4) from the x-axis.



Solution:

Here $x_1=-3$, $x_2=-3$, $y_1=0$ & $y_2=4$. Put all the values in the given formula. $d=\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$.

$$AB = \sqrt{(-3+3)^2 + (4-0)^2}$$

$$AB = \sqrt{(4)^2} = 4$$

5. Find distance between the points (0, 5) and (-5, 0). Solution:

Here
$$x_1 = 0$$
, $y_1 = 5$, $x_2 = -5$ and $y_2 = 0$)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-5 - 0)^2 + (0 - 5)^2}$$

$$= \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \text{ units}$$

Practice:

- 6. Find the distance between the two points (-4, 0) & (0, 3).
- 7. Find the distance between the points(-3, 4) from its origin.
- 8. The point A(3, y) is equidistant from the points P(6, 5) and Q(0, -3). Find the value of y.
- 9. Find the distance between the points A(3, 6) and B(5, 7) using distance formula.
- 10. Find the distance between the co-ordinate of the points A(2, 3) and B(10, -3).

5. Quadratic equations: Formula method.

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1. Solve by using quadratic formula: x^2 -3x+1=0. Solution: a=1, b=-3, c=1

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4X1X1}}{2X1}$$

$$x = \frac{3 \pm \sqrt{9 - 4}}{2X1}$$

$$x = \frac{3 \pm \sqrt{5}}{2}$$

$$x = \frac{3 + \sqrt{5}}{2} \quad \text{or} \quad x = \frac{3 - \sqrt{5}}{2}$$

2. Solve the quadratic equation by using the formula: $x^2-6x-4=0$ Solution: a=1, b=-6, c=-4

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4X1X - 4}}{2X1}$$

$$x = \frac{6 \pm \sqrt{36 + 16}}{2}$$

$$x = \frac{6 \pm \sqrt{52}}{2} =$$

$$x = \frac{6 + \sqrt{52}}{2} \text{ or } x = \frac{6 - \sqrt{52}}{2}$$

3. By using the quadratic formula, find the solutions: $6x^2-7x-5=0$. Solution: a=6, b=-7, c=-5.

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{2a}{12}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4X6X - 5}}{2X6}$$

$$x = \frac{7 \pm \sqrt{49 + 120}}{12}$$

$$x = \frac{7 \pm \sqrt{169}}{12} = \frac{7 \pm 13}{12}$$

$$x = \frac{7 + 13}{12} \quad \text{or} \quad x = \frac{7 - 13}{12}$$

$$x = \frac{20}{12} \quad \text{or} \quad x = \frac{-6}{12}$$

$$x = \frac{5}{3} \quad \text{or} \quad x = -\frac{1}{2}$$

4. Solve the quadratic equation by formula: $2x^2+11x+5=0$. Solution: a=2, b=11, c=5.

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-11 \pm \sqrt{(11)^2 - 4X2X5}}{2X5}$$

$$x = \frac{-11 \pm \sqrt{121 - 40}}{10}$$

$$x = \frac{-11 \pm \sqrt{81}}{10} = \frac{-11 \pm 9}{10}$$

$$x = \frac{-11 \pm 9}{10} \quad \text{or} \quad x = \frac{-11 - 9}{10}$$

$$x = \frac{-2}{10} \quad \text{or} \quad x = \frac{-20}{10}$$

$$x = -\frac{1}{5} \quad \text{or} \quad x = -2$$

5. Solve the quadratic equation using formula: $x^2-8x+15=0$. Solution: a=2, b=11, c=5.

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-11 \pm \sqrt{(11)^2 - 4X2X5}}{2X5}$$

$$x = \frac{-11 \pm \sqrt{121 - 40}}{10}$$

$$x = \frac{-11 \pm \sqrt{81}}{10} = \frac{-11 \pm 9}{10}$$

$$x = \frac{-11 \pm 9}{10} \quad \text{or} \quad x = \frac{-11 \pm 9}{10}$$

$$x = \frac{-2}{10} \quad \text{or} \quad x = \frac{-20}{10}$$

$$x = -\frac{1}{5} \quad \text{or} \quad x = -2$$

Practice:

Solve the quadratic equation by using formula method

- 6. $2x^2+x-5=0$.
- 7. $x^2+2x+1=0$.
- 8. $5x^2+31x+6=0$.
- 9. $x^2-x-30=0$.
- 10. $4x^2-11x-3=0$.
- 11. $x^2+2x-5=0$.

6. Pair of linear equations in two variables: solve x & y.

1. Solve the equations by elimination method: x+y=-2 & 2x-y=8.

Solution: let the given equations be x+y=-2 & 2x-y=8.

$$x+y=-2$$
 -----(1)

$$2x-y=8$$
 -----(2)

By eliminating add the above two equations.

We get x+y=-2

$$2x-y=8$$
$$3x=6$$

put above x value in any one equation we get y value equation (1) becomes 2+y=-2

$$y=-2-2$$

 $y=-4$

2. Solve: x-y=1& 2x-3y=5.

Solution: The given two equations are x-y=1& 2x-3y=5.

$$x-y=1$$
 -----(1)

$$2x-3y=5$$
 -----(2)

For eliminating, multiple 2 to the equation (1) we get

$$2x-2y=2$$

put y value in equation (1) we get

$$x-(-3)=1$$

3. Solve: x-2y=2 & 2x-y=-8.

Solution: The given two equations are x-2y=2 & 2x-y=-8.

$$X-2y=2$$
 -----(1)

$$2x-y=-8-----(2)$$

For eliminating, multiple 2 to the equation (1) we get

$$2x-4y=4$$

put y value y=-3 i

in equation (1) we get
$$x-2(-3)=1$$

4. Solve:
$$3x+2y=-5 \& x-6y=-15$$
.

Solution: The given two equations are
$$x-2y=2 \& 2x-y=-8$$
.

$$3x+2y=-5$$
 -----(1)
 $x-6y=-15$ -----(2)

$$3x + 2y = -5$$

$$3x-18y = -45$$

v = 20

subtract this two

x = 75

put y value

x-6(20)=-45

5. Solve:
$$x-2y=8 \& 2x-3y=14$$
.

Solution: The given two equations are
$$x-2y=8 \& 2x-3y=14$$
.

$$x-2y=8$$
 -----(1)

$$2x-3y=14----(2)$$

$$2x-4y = 16$$

$$2x-3y = 14$$

v = -2

subtract this two

put y value

$$x-2(-2)=8$$

x=4

Practice:

Solve the following equations

$$1)x+2y=10 \& 2x-4y=-4.$$

2)
$$3x+y=-2\& x+2y=1$$
.

3)
$$x-y=1$$
& $2x-3y=5$.

4)
$$3x+4y=10 \& x-8y=-6$$
.

5)
$$x+2y=9 \& 2x-y=3$$
.

6)
$$2x+y=9 \& 3x-2y=-4$$
.

7)
$$8x+2y=-2 \& 4x-6y=-22$$
.

8)
$$x-2y=8 \& 3x-6y=9$$
.

9)
$$x-5y=-14 \& 6x+y=9$$
.

10)
$$x-2y=2 \& 2x+y=-8$$
.

11)
$$x-2y=-9 \& 3x+y=1$$
.

12)
$$x+y=-7 \& 2x-3y=1$$
.

$$13)x-2y=-7 & 3x+2y=3.$$

14)
$$4x-2y=16 \& 3x+y=2$$
.

15)
$$x+4y=2 \& 3x-6y=18$$
.

16)
$$x-y=5 \& 2x+y=-11$$
.

17)
$$6x+y=1 \& 2x-y=7$$
.

18)
$$x+y=4 \& 2x-3y=18$$
.

18)
$$x+y=4 & 2x-3y=18$$
.

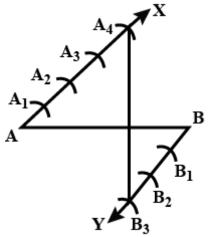
19)
$$x+y=-2 \& 2x+4y=-14$$
.

20)
$$2x+3y=-5 \& 4x+8y=-8$$
.

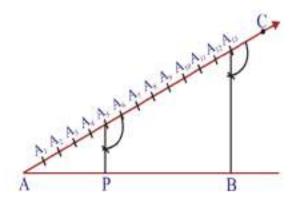
21)
$$x+2y=7 & 3x-4y=-9$$
.

7. <u>Constructions</u>: Dividing the line segment

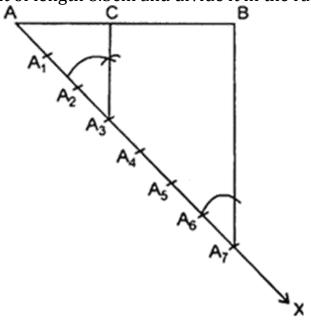
1. Draw a line segment of length 9cm and divide it in the ratio 2:3.



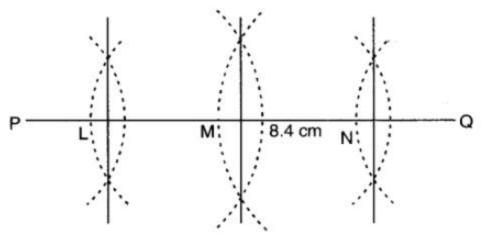
2. Draw a line segment of length 7.6cm and divide it in the ratio 5:8.



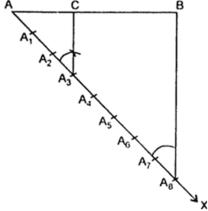
3. Draw a line segment of length 8.3cm and divide it in the ratio 2:5.



4. Draw a line segment PQ = 8.4 cm. Divide PQ into four equal parts using ruler and compass.



5. Draw a line segment of length 7.6cm divide it in the ratio 3:5.

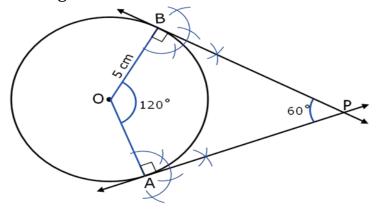


Practice:

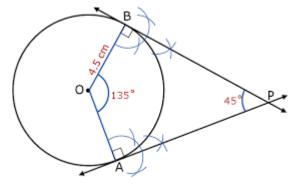
- 6. Draw a line of length 7cm, divide it in the ratio 2:4.
- 7. Draw a line segment then divide internally in the ratio of 3:7.
- 8. Draw a line segment AB=10cm & divide it in the ratio 5:8.
- 9. Draw a line of length 7.3cm and then divide it in the ratio 4:6.
- 10. Draw a line segment of AB=8cm and divide it in the ratio 3:2 by geometrical construction.
- 11. Construct a tangent to a circle of radius 4cm at any point P on its circumference.

8. Constructions: Tangent construction

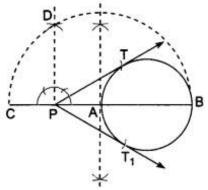
1. Construct tangents to a circle of radius 5cm such that the angle between the tangents is 60° .



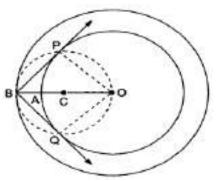
2. Construct a circle of radius 4.5cm, such that the angle between the two radii is 135°.



3. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.



4. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length.



Justification:

In \triangle BPO, we have

 $\angle BPO = 90^{\circ}$, OB = 6 cm and OP = 4 cm

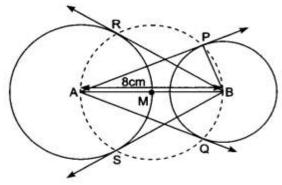
 \therefore OB² = BP² + OP² [Using Pythagoras theorem]

$$\Rightarrow BP = \sqrt{OB^2 - OP^2}$$

$$\Rightarrow BP = \sqrt{36-16} = \sqrt{20} \text{ cm} = 4.47 \text{ cm}$$

Similarly, BQ = 4.47 cm

5. Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.



Justification:

On joining BP, we have \angle BPA = 90°, as \angle BPA is the angle in the semicircle.

: AP ⊥ PB

Since BP is the radius of given circle, so AP has to be a tangent to the circle. Similarly, AQ, BR and BS are the tangents.

- 6. Construct a pair of tangents to a circle of radius 6.2cm from an external point 3.8 cm away from the circle.
- 7. Construct a pair of tangents to a circle of radius 4cm from an external point 4 cm away from the circle.
- 8. Construct a tangent to a circle of radius 3.5cm from a point on the concentric circle of radius 7cm and measure its length.
- 9. Construct a pair of tangents to a circle of radius 5.5cm at the end point of radii. The angle between the two radii is 90° .

9. Statistics: Mean, Median & Mode.

Mean for grouped data, $x = \frac{\sum fx}{n}$ (direct method)

Median for grouped data, median= LRL+ $\left\{\frac{\frac{n}{2}-fc}{fm}\right\}$ x h

Mode for grouped data, Mode=LRL+ $\left\{\frac{f_1-f_0}{2f_1-f_0-f_2}\right\}$ x h.

1. Find the mean, median and mode for the gollowing data.

C.I	10-20	20-30	30-40	40-50	50-60
f	5	2	3	6	4

To find the mean,

C.I	f	X	fx
10-20	5	15	75
20-30	2	25	50
30-40	3	35	105
40-50	6	45	270
50-60	4	55	220
	n=20		$\sum fx = 720$

$$X = \frac{\sum fx}{n}$$
$$X = \frac{720}{20}$$

Mean=36

To find the median, first we should find $\frac{n}{2}$, $=\frac{20}{2}=10$

C.I	f	f_c
10-20	5	5
20-30	2	7
30-40	3	10
40-50	6	16
50-60	4	20
	n=20	

Median= LRL+
$$\left\{\frac{\frac{n}{2}-fc}{fm}\right\}$$
 x h LRL=30, f_m=3, f_c=7 & h=1
=30+ $\left\{\frac{10-7}{3}\right\}$ x 10 = 30+1x10

Median =
$$30+10=40$$

To find the mode, note that f_1 , $f_0 \& f_2$.

C.I	f
10-20	5
20-30	2
30-40	3 f ₀
40-50	6 f ₁
50-60	4 f ₂

Mode=LRL+
$$\left\{\frac{f_1-f_0}{2f_1-f_0-f_2}\right\}$$
x h, LRL=40, f₁=6, f₀=3 & f₂=4.
=40+ $\left\{\frac{6-3}{12-3-4}\right\}$ X10 \Rightarrow 40+ $\left(\frac{3}{5}\right)$ X10
=40+6.

Mode=46

2. Find the mean, median and mode for the gollowing data.

C.I	2-6	7-11	12-16	17-21	22-26
f	7	13	8	7	5

To find the mean,

C.I	f	X	fx
2-6	7	4	28
7-11	13	9	117
12-16	8	14	112
17-21	7	19	133
22-26	5	24	120
	n=40		$\sum fx = 510$

$$X = \frac{\sum fx}{n}$$

$$X = \frac{510}{40}$$

Mean=12.75

To find the median, first we should find $\frac{n}{2}$, = $\frac{40}{2}$ = 20

C.I	f	fc
2-6	7	7
7-11	13	20
12-16	8	28
17-21	7	35
22-26	5	40
	n=40	

median= LRL+
$$\left\{\frac{\frac{n}{2}-fc}{fm}\right\}$$
 x h LRL=7, f_m=13, f_c=7 & h=5
=7+ $\left\{\frac{20-13}{7}\right\}$ x 5 = 7+5
Median = 12

To find the mode, note that f_1 , $f_0 \& f_2$.

C.I	f
2-6	7 f ₀
7-11	13 f ₁
12-16	8 f ₂
17-21	7
22-26	5

Mode=LRL+
$$\left\{\frac{f_{1}-f_{0}}{2f_{1}-f_{0}-f_{2}}\right\}$$
x h, LRL=7, f₁=13, f₀=7 & f₂=8.
=7+ $\left\{\frac{13-7}{26-7-8}\right\}$ X5 \Rightarrow 7+ $\left(\frac{6}{11}\right)$ X10
=7+5.4.
=12.4.

3. Find the mean, median and mode for the gollowing data.

C.I	1-5	6-10	11-15	16-20	21-25
f	6	7	4	8	5

To find the mean,

C.I	f	X	fx
1-5	6	4	24
6-10	7	9	63
11-15	4	14	56
16-20	8	19	152
21-25	5	24	120
	n=30		$\sum fx = 415$

$$X = \frac{\sum fx}{n}$$
$$X = \frac{415}{30}$$

Mean=13.83

To find the median, first we should find $\frac{n}{2}$, = $\frac{30}{2}$ = 15

C.I	f	fc
1-5	6	6

6-10	7	13
11-15	4	17
16-20	8	25
21-25	5	30
	n=30	

median= LRL+
$$\left\{\frac{\frac{n}{2}-fc}{fm}\right\}$$
 x h LRL=11, f_m=4, f_c=13 & h=5
=11+ $\left\{\frac{15-13}{4}\right\}$ x 5 = 11+2.5
Median = 13.5

To find the mode, note that f_1 , $f_0 \& f_2$.

C.I	f
1-5	6
6-10	7
11-15	4 f ₀
16-20	8 f ₁
21-25	5 f ₂

Mode=LRL+
$$\left\{\frac{f_{1-f_{0}}}{2f_{1-f_{0}-f_{2}}}\right\}$$
x h, LRL=16, f₁=8, f₀=4 & f₂=5.
=16+ $\left\{\frac{8-4}{16-4-5}\right\}$ X5 \Rightarrow 16+ $\left(\frac{4}{7}\right)$ X10
=16+5.71.
=21.71.

Practice:

Find the mean, Median and Mode for the following data.

C.I	0-20	20-40	40-60	60-80	80-100
f	3	4	2	7	4

C.I	3-13	13-23	23-33	33-43	43-53	53-63
f	12	9	8	13	5	3

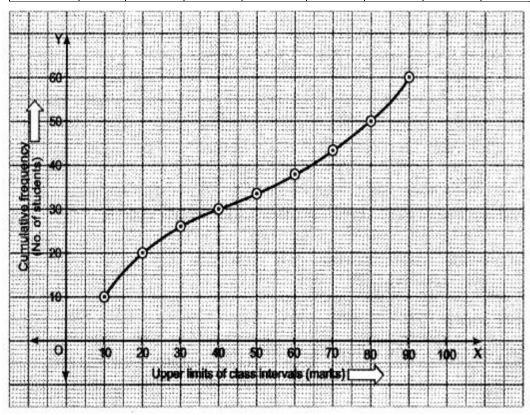
C.I	2-6	7-11	12-16	17-21	22-26
f	5	7	4	8	6

C.I	1-5	6-10	11-15	16-20	21-25
f	1	2	4	1	2

10. Statistics: Ogive graph.

1. Convert the following as less than type then draw its ogive.

		0		J I			0 -		
Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No.of	10	10	6	4	4	4	6	6	10
students									

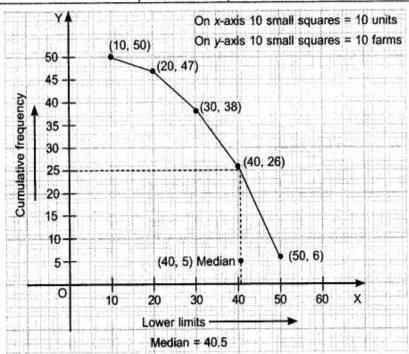


2. The following table gives production yield of rice per hectare in some farms of a village:

Production yield (in kg/hectare)	10–20	20-30	30-40	40–50	50-60
No. of farms	3	9	12	20	6

Draw a 'more than type' ogive. Also, find median from the curve.

Production yield (in kg/ hectare) Class interval	Frequency	Production yield more than or equal to	c.f
10 – 20	3	10	50
20 - 30	9	20	47
30 – 40	12	30	38
40 – 50	20	40	26
50 - 60	6	50	6

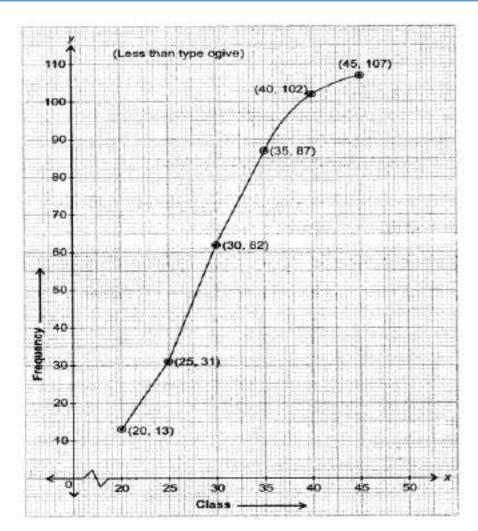


3. Draw a 'less than type' ogive for the following frequency distribution.

Class	15 – 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45
Frequency	13	18	31	25	15	5

Solution:

Class	Frequency		
Less than 20	13		
Less than 25	13 + 18 = 31		
Less than 30	31 + 31 = 62		
Less than 35	62 + 25 = 87		
Less than 40	87 + 15 = 102		
Less than 45	102 + 5 = 107		



4.

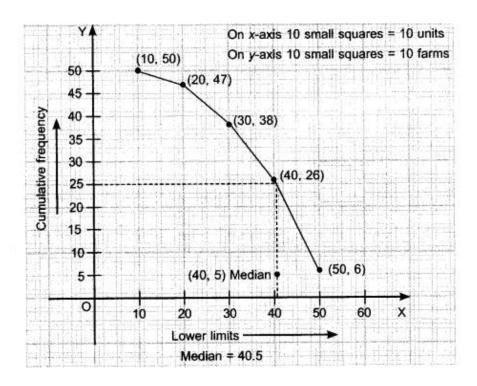
The following table gives production yield of rice per hectare in some farms of a village:

Production yield (in kg/hectare)	10–20	20–30	30-40	40–50	50-60
No. of farms	3	9	12	20	6

Draw a 'more than type' ogive. Also, find median from the curve.

Solution:

Production yield (in kg/ hectare) Class interval	Frequency	Production yield more than or equal to	c.f
10 – 20	3	10	50
20 - 30	9	20	47
30 – 40	12	30	38
40 – 50	20	40	26
50 - 60	6	50	6



Practice:

5.

No. of mangoes	50-52	53-55	56-58	59-61	62-64
No. of boxes	15	110	135	115	25

6.

Marks obtained	Less than	Less than	Less than	Less than
	20	30	40	50
No. of students cumulative frequency	8	13	19	24

7.

Weight (in kg)	50-55	55-60	60-65	65-70	70-75	75-80
No. of candidates	13	18	45	16	6	2

40-60

8.

Freque	ncy	16	14	24	26		x
Length (in mm)	109-117	118–126	127-135	136–144	145-153	154-162	163–171
No. of leaves	4	6	14	13	6	4	3

9.

Class

0 - 20

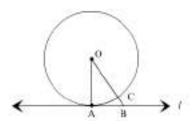
60-80

80-100

11. Circle: Theorems.

1. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact".

Solution:



Given: a circle C(0, r) and a tangent l at point A.

To prove: $0A \perp 1$

Construction: Take a point B, other than A, on the tangent l. join OB. Suppose OB meets the circle in C.

Proof: We know that, among all line segment joining the point 0 to a point on l, the perpendicular is shortest to l.

OA=OC (Radius of the same circle)

Now, OB=OC+BC.

∴ OB>OC

⇒0B>0A

⇒OA<OB

B is an arbitrary point on the tangent l. Thus, OA is shorter than any other line segment joining O to any point on l.

Here $OA \perp l$.

2. Prove that "the lengths of the tangent drawn from an external point to the circle are equal".

Solution:

Given: A circle with center O. PA & PB are two tangents drawn from an external point P.

To prove: PA=PB

Construction: Join OA, OB & OP.

Proof: It is known that a tangent is at any point of a circle is perpendicular to the

radius through the point of contact.

OA⊥PA & OB⊥PB

In ΔOPA & OPB, ∟OPA=∟OPB

OA=OB (radii) OP=OP (common)

Hence \triangle OPA is congruent to \triangle OPB. Therefore AP=PB.

12. <u>Pair of linear equations in two variables</u>: Graphical solution.

1. Solve by graphically: x-y=4 & x+y=10.

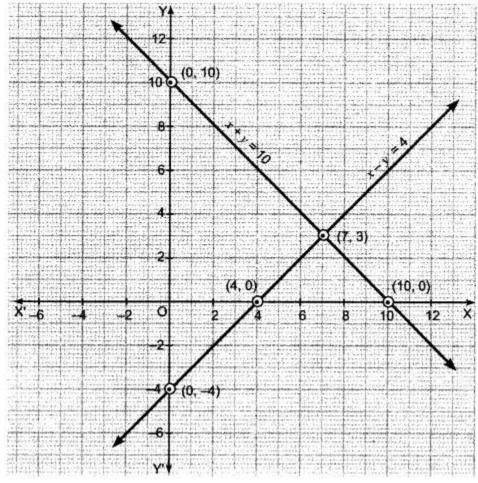
Solution: x-y=4-----(i) & x+y=10-----(ii) From equation (i), we have the following table:

x	0	4	7
у	- 4	0	3

From equation (ii), we have the following table:

x	0	10	7
y	10	0	3

Plotting this, we have



Here, the two lines intersect at point (7,3) i.e., x = 7, y = 3.

2. Show graphically the given system of equations

2x + 4y = 10 and 3x + 6y = 12 has no solution.

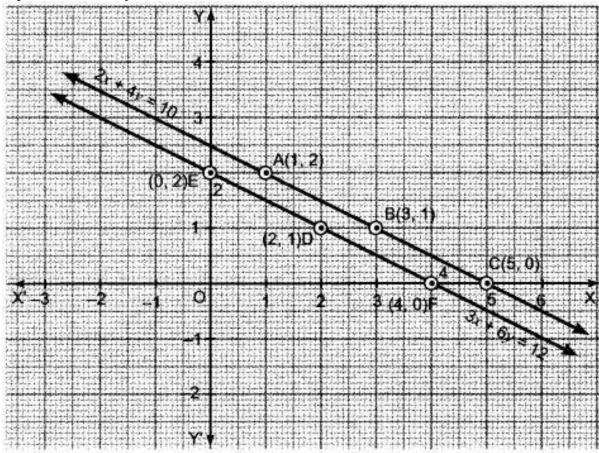
Solution: 2x+4y=10-----(i) & 3x+6y=12-----(ii) From equation (i), we have the following table:

x	1	3	5
y	2	1	0

From equation (ii), we have the following table:

x	2	0	4
y	1	2	0

Plot the points D (2, 1), E (0, 2) and F (4,0) on the same graph paper. Join D, E and F and extend it on both sides to obtain the graph of the equation 3x + 6y = 12.



We find that the lines represented by equations 2x + 4y = 10 and 3x + y = 12 are parallel. So, the two lines have no common point. Hence, the given system of equations has no solution.

3. Draw the graph of 2x + y = 6 and 2x - y + 2 = 0.

Solution:

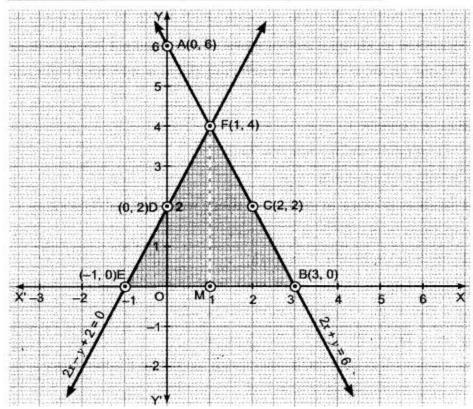
We have,
$$2x + y = 6$$
-----(i)

From equation (i), we have the following table:

x	0	3	2
y	6	0	2

From equation (ii), we have the following table:

x	0	-1	1
у	2	0	4



4. Draw the graph of the equations x - y + 1 = 0 and 3x + 2y - 12 = 0.

Solution: we have x-y=-1 -----(i)

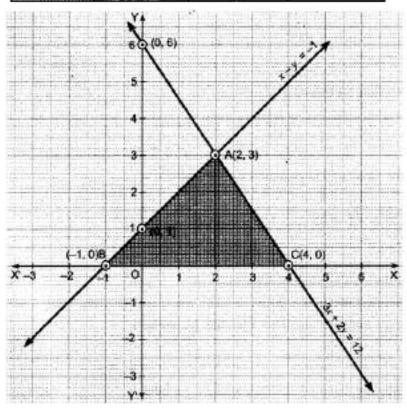
$$3x+2y=12----(ii)$$

From equation (i), we have the following table:

x	- 1	0	2
y	0	1	3

From equation (ii), we have the following table:

x	0	4	2
y	6	0	3



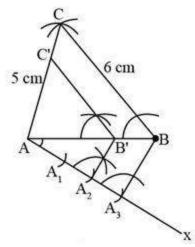
Practice: solve the following equations graphically

- 5. x+2y=9 & 2x-y=3.
- 6. x-2y=2 & 2x+y=-8.
- 7. x-2y=-9 & 3x+y=1.
- 8. x+2y=4 & 6x+y=13.
- 9. X+2y=1 & 2x+3y=-1.
- 10. X-2y=8 & 2x-3y=14.
- 11. x-y=5 & 2x+y=-11.
- 12. x+y= -7 & 2x-3y= 1.
- 13. x+4y=2 & 3x-6y=18.

13. **Constructions**: Constructions of similar triangles.

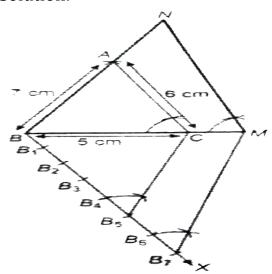
This construction is depends on two type of fractions, one is proper and another is improper fraction. Let's see both in different examples.

1. Construct a triangle with sides 4cm, 5cm & 6cm and then another triangle whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.



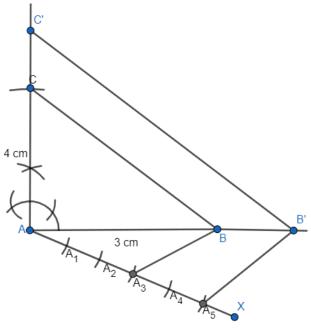
2. Construct a triangle with sides 5cm, 6cm & 7cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Solution:



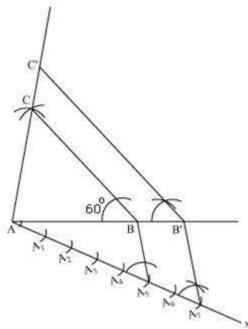
3. Construct a right angled triangle with sides 3cm & 4cm and then another triangle whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

Solution:



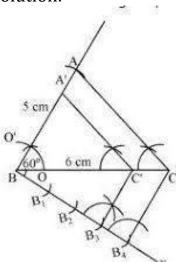
4. Construct a triangle ABC with base AB=5cm, \triangle ABC=60° & BC=7cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Solution:



5. Construct a triangle ABC with AB=5cm, $_ABC=60^{\circ}$ & BC=6cm and then another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle.

Solution:



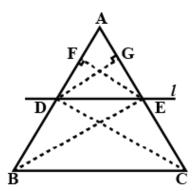
Practice:

- 6. Draw a triangle ABC with side BC=6cm, \bot B=60°, \bot A=10° Then construct a triangle a triangle whose sides are $\frac{1}{3}$ times the corresponding sides of \triangle ABC.
- 7. Draw a triangle PQR with side QR=5cm, \angle Q=45°, \angle P=105°. Then construct a triangle a triangle whose sides are $\frac{5}{2}$ times the corresponding sides of Δ POR.
- 8. Construct an isosceles triangle whose base is 5cm and altitude 3cm and then another triangle whose sides are $\frac{2}{5}$ times the corresponding sides of the isosceles triangle.
- 9. Construct a triangle with sides 3.5cm, 4cm & 5cm and then another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the first triangle.
- 10. Construct a triangle with sides 3cm, 4cm & 6cm and then another triangle whose sides are $\frac{7}{4}$ of the corresponding sides of the first triangle.
- 11. Construct a right angled triangle with sides 5cm & 6cm and then another triangle whose sides are $2\frac{1}{2}$ of the corresponding sides of the first triangle.

14. TRIANGLES: Theorems.

1. Basic proportionality theorem(B.P.T) or Thales Theorem:**-

"If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".



Let **ABC** be the triangle.

The line I parallel to BC intersect AB at D and AC at E.

To prove: $\frac{DB}{AD} = \frac{CB}{AE}$

Join BE,CD

Draw **EF LAB**, **DG LCA**

Since **EF**⊥**AB**,

EF is the height of triangles ADE and DBE

Area of $\triangle ADE = \frac{1}{2} \times \text{ base } \times \text{ height} = \frac{1}{2} \times AD \times EF$

Area of $\triangle DBE = \frac{1}{2} \times DB \times EF$

$$\frac{areaof\Delta DBE}{areaof\Delta ADE} = \frac{1/2 \times DB \times EF}{1/2 \times AD \times EF} \times = \frac{DB}{AD} \qquad(1)$$

Similarly,

$$\frac{areaof\Delta DBE}{areaof\Delta ADE} = \frac{1/2 \times CB \times EF}{1/2 \times AE \times EF} \times = \frac{CB}{AE} \qquad(2)$$

But ΔDBE and ΔDCE are the same base DE and between the same parallel straight line BC and DE.

Area of $\triangle DBE$ = area of $\triangle DCE$ (3)

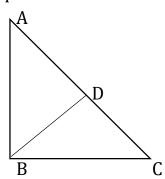
From (1), (2) and (3), we have

$$\frac{DB}{AD} = \frac{CB}{AE}$$

Hence proved.

2. Pythagoras theorem:

In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.



Data: In \triangle ABC, \angle ABC = 90° **To Prove:** AB² + BC² = CA²

Construction: Draw BD \perp AC.

Proof: Statement

Compare \triangle ABC and \triangle ADB,

 $\angle ABC = \angle ADB = 90^{\circ}$

∠BAD is common.

∴ ∆ABC ~ ∆ADB

$$\Rightarrow \frac{AB}{AD} = \frac{AC}{AB}$$

 $AB^2 = AC.AD(1)$

Compare \triangle ABC and \triangle BDC,

∠ABC =∠BDC =90°

∠ACB is common

∴ \triangle ABC \sim \triangle BDC

 $\Rightarrow \frac{BC}{DC} = \frac{AC}{BC} \Rightarrow =$

 $BC^2 = AC.DC....(2)$

By adding (1) and (2) we get

 $AB^2 + BC^2 = (AC. AD) + (AC. DC)$ $AB^2 + BC^2 = AC (AD + DC)$

 $AB^2 + BC^2 = AC$. $AC = AC^2$

 $\therefore AB^2 + BC^2 = AC^2$

Reason

(Q Data and construction)

(Q Equiangular triangles)

(Q A A similarity criteria)

(Q Data and construction)

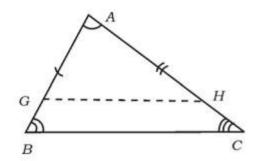
(Q Equiangular Triangles)

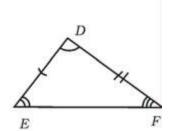
(Q AA similarity criteria)

[QAD + DC = AC]

3. AA similarity Criterion theorem:

"If two triangles are equiangular then their corresponding sides are in proportion"





Data: In ΔABC and ΔDEF

- (i) $\angle BAC = \angle EDF$
- (ii) $\angle ABC = \angle DEF$

To prove: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$

Construction: Mark points 'G' and 'H' on AB and AC such that

(i) AG = DE and (ii) AH = DF Join G and H

Proof: Statement Reason

Compare \triangle AGH and \triangle DEF,

AG = DE [Construction]

 $\angle GAH = \angle EDF$ [Data]

AH = DF [Construction]

∴ ΔAGH ≅ ΔDEF [SAS] ∴ ∠AGH = ∠DEF [CPCT]

But $\angle ABC = \angle DEF$ [Data]

 $\Rightarrow \angle AGH = \angle ABC$ [Axiom - 1]

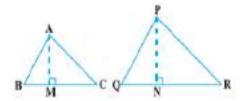
∴ GH || BC [If corresponding angles are equal then lines are ||.]

∴ In $\triangle ABC \frac{AB}{AG} = \frac{BC}{GH} = \frac{CA}{HA}$ [third corollary to Thales theorem]

Hence $\frac{AB}{DE} = \frac{BC}{EE} = \frac{CA}{ED}$

4. Area Of Similar Triangle:

Prove that "The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".



We need to prove that

$$\frac{ar(ABC)}{ar(PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$$

Now,
$$ar(ABC) = \frac{1}{2} \times BC \times AM$$

and
$$ar(PQR) = \frac{1}{2} \times QR \times PN$$

So,
$$\frac{ar(ABC)}{ar(PQR)} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times QR \times PN}$$
 ... (1)

Now, in AABM and APQN,

$$\angle B = \angle Q$$
 (As $\triangle ABC \sim \triangle PQR$)

So, ΔABM ~ ΔPQN (AA similarity criterion)

Therefore,
$$\frac{AM}{PN} = \frac{AB}{PQ}$$
 ... (2)

Also, $\triangle ABC \sim \triangle PQR$ (Given)

So,
$$\frac{AB}{PO} = \frac{BC}{OR} = \frac{CA}{RP} \dots (3)$$

Therefore,
$$\frac{ar(ABC)}{ar(PQR)} = \frac{AB}{PQ} \times \frac{AM}{PN}$$

$$= \frac{AB}{PQ} \times \frac{AB}{PQ} \text{ [From (2)]}$$

$$=\left(\frac{AB}{PQ}\right)^2$$

Now using (3) we get:

$$\frac{ar(ABC)}{ar(PQR)} = \left(\frac{AB}{PQ}\right)^{2} = \left(\frac{BC}{QR}\right)^{2} = \left(\frac{CA}{RP}\right)^{2}$$